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In the presence of spin-orbit interaction, in addition to the well-known weak- 
field coupling scheme for cubic complexes in which the tigand field perturbation 
is applied last, we show that it is possible to devise a second weak-field coupling 
scheme in which the spin-orbit perturbation is applied last by constructing 
the corresponding energy matrices for d 2"8 electronic configurations. We also 
show that for the parameters applicable to actual experimental systems, the new 
weak-field coupling scheme yields purer eigenfunctions than the well-known 
weak-field coupling scheme. 
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1. Introduction 

In the absence of spin-orbit perturbation, the coupling scheme for cubic transition- 
metal complexes in which the ligand field perturbation is carried out after the 
perturbation due to interelectronic repulsions is known as the weak-field coupling 
scheme. Defining the scheme in which the perturbation due to interelectronic 
repulsions is applied first as a weak-field coupling scheme then, two weak-field 
coupling schemes should be possible for cubic complexes in the presence of spin- 
orbit interaction, depending upon the sequence of perturbations of the ligand field 
potential and spin-orbit interaction. Only one of these, the one in which spin-orbit 
perturbation precedes that of ligand field has been worked out for all the d ~, 
n = 2 to 8, electronic configurations so far [1-4]. It is possible, however, to devise 
in general the second weak-field coupling scheme also in which the ligand field 
perturbation precedes that due to spin-orbit interaction. We show the derivation of 
this new scheme by constructing the energy matrices for d 2,s electronic configura- 
tions. We find that the new weak-field scheme presented here is more appropriate 
not only to systems with minor spin-orbit interaction such as the 3d transition- 
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metal complexes but to other systems in which the spin-orbit interaction can be 
dominant as well. 

2. Theory 

Representing the perturbations due to electron repulsions, cubic ligand field poten- 
tial and spin-orbit interaction as ~j >, e2/rm VLc r and ~(rOl~. s~, respectively, the well- 
known weak-field scheme which employs the sequence of perturbations ~ j ,  
e2/r~j > ~(r)l~.s~ > Vc Lr will be designated {LSJF c} representation and the new 
scheme employing the sequence of perturbations ~. i,~ e2/r~j > V~ F > ~(rOl~.s~ will 
be designated {LSX~ representationL 

There are obvious reasons for the use of the sequence of perturbations ~.>~ 
e2/r~j > ~(r~)l~.s~ > V~ r. The (LSJ) spin-orbital levels of the Russell-Saunders (or 
LS) terms become the basis for the ligand field perturbation and thus the electron 
repulsion and the spin-orbit energy terms are same as those of the atomic problem 
which are either known or can be calculated easily by the well-known methods 
[5]. Thus by connecting the spherical {JM~} representation to the cubic {pc} 
representation, the matrix elements which need to be explicitly computed in this 
basis are those involving the ligand field potential VcLr. 

2.1. The New Weak-Field Coupling Scheme 

The second weak-field coupling scheme possible is with the ~j>~ e2/r~j > V~ F > 
~(r,)l~, s~ sequence of perturbations. The (LS) terms resulting from electron repul- 
sions perturbation of a given electronic configuration are still the basis functions 
in this scheme to start with. These terms, however, will be split first into the cubic 
(XS) levels by the ligand field perturbation which are then split into the final cubic 
I~C levels by spin-orbit perturbation. The connection of the atomic {LML} repre- 
sentation to the cubic {X c} representation is exactly same as the{JMj}-{r c} con- 
nection mentioned above, where the {JMs} representation is replaced by {LML} 
representation. This part of the coupling scheme is, of course, well known because 
it is same as the weak-field scheme in the absence of spin-orbit perturbation. 

The connection of the cubic (2s+~X(LS) levels to the F c representation is carried 
out as follows. Using the symmetry transformation properties of the spin (S) 
and coordinate (X) functions, these functions are made to combine in exactly the 
same way as in the strong field approach [6] to form the F c representations. 
The coefficients in the connection thus become the well-known cubic coupling 
coefficients (or Clebsch-Gordon coefficients), (pc ] XC(LML)XC(SMs))" 

The two coupling schemes are related by the unitary transformation 

((P~ ] XC(LM,.)XC(SMs)) [ (PC I JMj)) 

where 

IJMs> =- ILSJM~> 

1 We shall use the I'~, ] = 1 to 8, notation for cubic representations including coordinate and 
spin space and the X c, X = A1, A2, E, T1, T2 notation for cubic representations of coordinate 
space only. 
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and the ILSJMI) functions are given by an expansion of ILMLSMs) functions in 
terms of the Wigner coefficients or the 3-j symbols 

(LSJMs I LMLSM~), i.e. 

(LSJMsILMzSMs)  = (_,)S-Z-M, ~ (2J + 1)1/2(L S J ) .  
MLM.~ Mz Ms - M j  

The mixing of a given F~ wave function from one scheme to the other will take place 
only if it arises out of different J levels of a certain (LS) term. If an (LS) term does 
not give rise to the same F~ level from its different J values, the wave functions of 
the F c levels arising out of that term will be same in both the coupling schemes, 
i.e. the wave functions in the two schemes are related at most by a phase factor. It is 
obvious that in the case of the singlet spin functions (i.e. S --- 0), the ~X and the P 
representations become identical. 

The explicit formation of the wave functions in the (LSXCF c} scheme can be carried 
out either directly or indirectly. In the direct formation, first the cubic coordinate 
functions (2s+I~X(LS) are obtained with the use of the ]LMLSMs) functions with 
Ms = S. These coordinate functions are then combined with the many-electron 
spin functions to form the final F~ levels. While combining, of course, the spins of 
the individual electrons have to be suppressed from the [LMLSMs) functions. The 
indirect procedure of obtaining the wave functions involves the application of the 
unitary transformation on the wave functions of the {LSJMj} scheme. 

2.2. Application to d 2,8 Electronic Configurations 

The d 2 and d 8 electronic configurations perturbed by the electron repulsions give 
rise to the terms 3F, 3p, 1G, 1D and 1S. The splittings of these terms in the two weak- 
field coupling schemes and the correlation of energy levels in the two schemes are 
shown in Fig. 1. The wave function of any F~ level generated by the terms ~G, ~D, 
1S and 3p is same in both the coupling schemes. Similarly F2 level will have the 
same wave function whether it is produced from 3F3 or 3F(3T2g). This is also true 
for the F 1 level of 3F4 and 3F(3T~g). The only levels that scramble on going from 
one scheme to the other are the two F3, two F4 and three Fs, all produced by 3F. 
The unitary transformations connecting the two schemes for these scrambled Fj levels 
are as follows. 

s 3F2 

3Tlg(3r) ~/9-/14 

3T2g(3F) - V~/14 

3E~ F~ 
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Fig. 1. Cor re la t ion  o f  d 2'8 cubic  energy levels in the  two weak-field coupl ing  schemes .  The  
unconnec t ed  levels are  the  ones  tha t  are  sc rambled  be tween the  two schemes  

The I?3, 174, Ps energy matrices of the d 2 configuration in the new coupling scheme, 
{LSXCFT}, are given in Table 1. The corresponding matrices in the {LSJ1?7} 
scheme are well known [1]. The Pl energy matrix as well as the F2 matrix will be 
same in both the schemes because there is no mixing of levels from one scheme to 
the other in these representations. It is only the 173, F4 and F5 matrices that will be 
different between the two schemes. In the case of these matrices also, in a given 
1?j matrix, that part of the matrix involving levels which are related only by a phase 
factor in the two coupling schemes will be same. It is the diagonal and the off- 
diagonalelements of levels that are scrambled on going from one scheme to the other 
that will be different in the two schemes. In addition, the off-diagonal elements 
between scrambled and unscrambled levels will also be different. Thus, for these 
scrambled levels the Dq parameter is diagonalized in the {LSXCP~} representation, 
whereas the spin-orbit [ parameter is diagonalized in the {LSJ1?~} representation. 

2.3, Advantages of the {LSX~ . } Coupling Scheme 

An obvious advantage of the new weak-field coupling scheme is in the use of its 
levels in the limit of zero spin-orbit interaction. In this limit, the levels of this 
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scheme become the proper eigenfunctions while the levels of  the {LSJ} scheme are 
completely scrambled. In other words, the [LSX e) functions are the proper  labels 
of  energy levels in the absence of  spin-orbit interaction. As we will show below the 
eigenfunctions o f  the {LSXCF 7} scheme remain purer even in the presence o f  the 
spin-orbit  interaction. 

The scrambling of  eigenvectors f rom one scheme to the other affects the purities 
of  eigenfunction, s o f  only these levels. The purities of  eigenfunctions of  levels 
involving eigenvectors that are related only by a phase factor in the two schemes 
will not  be different. Hence in compar ing the purities of  eigenfunctions o f  the two 
schemes we are only interested in those eigenvectors that  mix on going from one 
scheme to the other. 

The eigenvector 'components  of  the eigenfunctions obtained for d 2 and d 8 electronic 
configurations using V +3 and Ni + 2 ions as examples are presented in Table 2. The 
values used for Dq, B and C parameters are those of  the aquo complexes. The 
values of  210 and - 5 5 0  c m - 1  correspond to the average values found for the com- 
plexes of  Vanadium(II I )  and Nickel(II), respectively. For  these values o f  ~ and in 
the limit of  zero spin-orbit interaction the {LSXCF 7} representation yields eigen- 
functions of  much greater purity than the {LSJP c} representation. In the case of  
d 2 configuration, even for increased values of  ~ up to 2000 c m - L  the ILSXCF 7) 
levels remain of  much higher purity. For  d 8 configuration, it is at a ~ value of  
- 4 0 0 0  cm-1 ,  the ]LSXCF 7) levels become of  similar purity as the ]LSJF~) levels. 
It  should be noted that  the levels at increased ~ values have been obtained at the 
same Dq value. An  increase in Dq value which is applicable to the elements of  4d 
and 5d transition series should give rise to a better purity in {LSXCI "c} representa- 
t ion as can be seen f rom a compar ison of  the ]LSXCF 7) levels for the d 2 and d 8 
cases of  _+2000 c m - l ~  value. Thus, we conclude the new weak-field coupling 
scheme presented here is the more  appropriate  scheme than the well-known weak- 
field coupling scheme of  cubic complexes, not  only for the weak-field complexes of  
3d series but for the weak-field complexes of  4d and 5d series as well. 
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